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Abstract: Clustering analysis can be used to classify the 
objects into subsets with similar attributes. The main 
objective of clustering techniques is to group the data points in 
a multi-attribute dataset such that the similarities are 
maximized within the same cluster and minimized between 
different clusters. It is a branch in multivariate analysis and 
an unsupervised learning in pattern recognition. In the active 
field of research, numerous classic clustering algorithms have 
been used. However, these algorithms have their own 
disadvantages as reported by recent studies. FCM has been 
shown to have better performance than HCM. FCM has 
become the most well-known and powerful method in cluster 
analysis. However, these FCM algorithms have considerable 
trouble in a noisy environment and inaccuracy with a large 
number of different sample sized clusters. A good clustering 
algorithm should be robust and able to tolerate these 
situations that often happen in real application systems.  

Here in our work we analyse the data set by using k-means 
and fuzzy c-means clustering in which Euclidean Distance is 
used. After that we use a new metric norm instead of 
Euclidean Distance with k-means and fuzzy c-means and 
analyse the same data set. After analysis we found that this 
new metric is more robust than Euclidean Norm. These two 
algorithms are called alternative hard c-means (AHCM) and 
alternative fuzzy c-means (AFCM) clustering algorithms. 
After analysing these alternative types of c-means clustering 
on data set, we found that they have more robustness than c-
means clustering. Numerical results show that AHCM has 
better performance than HCM and AFCM is better than 
FCM as far as time complexity is concerned. 

Key words: Hard c-means (or k-means), fuzzy c-means 
(FCM), New Metric Norm, Alternative c-means (AHCM, 
AFCM), Time complexity. 

INTRODUCTION 
There are so many real life problems for that we have to 
find out the solutions for example Automated Speech 
Recognition, Finger Print Identification, Optical Character 
Recognition, DNA Sequence Identification, Image 
Processing, Business, Geology and many more, for which 
we have to design and build the machines that can 
recognizepatterns.Pattern recognition is basically an 
approach of taking the raw data and taking an action based 
on the category of the pattern [1]. This approach is basically 

used to extract the unknown pattern from the large set of 
data for business as well as real time applications. The raw, 
unlabelled data from the large volume of dataset can be 
classified initially in an unsupervised fashion by using 
cluster analysis i.e. clustering the assignment of a set of 
observations into clusters so that observations in the same 
cluster may be in some sense be treated as similar. The 
main objective of clustering techniques is to group the data 
points in a multi-attribute or multivariate dataset such that 
the similarities are maximized within the same cluster and 
minimized between different clusters. Data clustering 
analysis can be used as a stand-alone data mining tool, or as 
a pre-processing step for other data mining algorithms.  In 
this active field of research, numerous classic clustering 
algorithms have been widely-used, such as partitioning, 
hierarchical, density-based, model-based, grid-based and 
soft-computing methods. However, these algorithms have 
their own disadvantages as reported by recent studies. The 
performance of clustering is determined not only by the 
geometrical shapes and densities of the individual clusters 
but also by spatial relations and distances among the 
clusters [3]. It is hard to find a traditional clustering 
algorithm with high performance of clustering, robustness, 
fast convergence and simple parameter settings. Many 
fusion clustering algorithms [4-5] have been presented by 
researchers to overcome the main drawbacks of traditional 
algorithms and obtain better clustering results. Traditional 
clustering methods use hard partitioning based on classical 
set theory, which assumes that an object either belongs or 
does not belong to a cluster. However, in many real world 
situations, fuzzy clustering is more natural than hard 
clustering, it allows objects to belong to several clusters 
simultaneously, but is with different degrees of 
membership. Fuzzy c-means (FCM) proposed by Dunn [6] 
in 1973 and generalized by Bezdek [7] in 1981 has been 
successfully used in a wide variety of real world problems. 
The traditional FCM algorithm gets the optimal solution by 
minimizing the objective function. 
But the FCM method has the disadvantages of being too 
sensitive to the choice of the initial cluster numbers and 
centers, and easily trapped in local optima [8-9].  
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Most clustering methods use distance measures to 
determine similarity or dissimilarity between any pair of 
objects. Meanwhile, the commonly used Euclidean norm 
can only identify clusters with similar sizes and densities, 
and become inaccurate in a noisy environment [8]. To 
overcome the above defects, we replace the Euclidean 
norm with a new metric norm in HCM and FCM clustering 
algorithms, and then we have analysed these HCM, FCM 
and Alternative c-means (AHCM, AFCM) at the data set 
based on their clustering efficiency. 
 
K-Means Clustering [10, 11, 12] 
K-means or Hard c-means clustering is basically a 
partitioning method applied to analyse data and treats 
observations of the data as objects based on locations and 
distance between various input data points. Partitioning the 
objects into mutually exclusive clusters (k) is done by it in 
such a fashion that objects within each cluster remain as 
close as possible to each other but as far as possible from 
objects in other clusters.  
Each cluster is characterized by its centre point i.e. 
centroid. The distances used in clustering in most of the 
times do not actually represent the spatial distances. In 
general, the only solution to the problem of finding global 
minimum is exhaustive choice of starting points. But use of 
several replicates with random starting point leads to a 
solution i.e. a global solution. In a dataset, a desired 
number of clusters K and a set of k initial starting points, 
the K-Means clustering algorithm finds the desired number 
of distinct clusters and their centroids. A centroid is the 
point whose coordinates are obtained by computing the 
average of each of the coordinates of the points of samples 
assigned to the clusters. 
 
Algorithmic steps for K-Means clustering [13] 
Step-1) Set K – To choose a number of desired clusters, K.  
Step-2) Initialization – To choose k starting points which 
are used as initial estimates of the cluster centroids. They 
are taken as the initial starting values.  
Step-3) Classification – To examine each point in the data 
set and assign it to the cluster whose centroid is nearest to 
it. This can be done by calculating the Euclidean distance 
between the points.  
Step-4) Centroid calculation – When each point in the 
dataset is assigned to a cluster, it is needed to recalculate 
the new k centroids.  
Step-5) Convergence criteria – The steps of (iii) and (iv) 
require to be repeated until no point changes its cluster 
assignment or until the centroids no longer move. 
Finally, this algorithm aims at minimizing an objective 
function, in this case a squared error function. The 
objective function:- 

ܬ ൌ෍෍‖ݔ௞ െ ܿ௜‖ଶ
௡

௞ୀଵ

௖

௜ୀଵ

 

Where, ‖ݔ௞ െ ܿ௜‖ଶ is a chosen distance measure between a 
data point ݔ௞ and the cluster centre ܿ௜, is an indicator of the 
distance of the n data points from their respective cluster 
centres. 
 

FCM Clustering Algorithm [14] 
Fuzzy c-means (FCM) is a method of clustering which 
allows one piece of data to belong to two or more clusters. 
This method is developed by Dunn in 1973 and improved 
by Bezdek in 1981 and is frequently used in pattern 
recognition. 
FCM clustering algorithm is different from hard clustering 
algorithms. The membership of an object in a hard cluster 
is Boolean. In other words, an object either belongs or does 
not belong to a cluster. However, the fuzzy clustering 
allows each object ݔ௞ to belong to several clusters with 
associated membership degree values from 0 to 1. FCM 
algorithm is based on the minimization of an objective 
function called c-means function [6]: 
 
,ሺܺ	௠ሺி஼ெሻܬ ܷ, ܸሻ ൌ ∑ ∑ ,௞ݔ݀ሺ	௜௞௠ݑ 	௜ሻݒ

௡
௞ୀଵ

௖
௜ୀଵ 			ሺ1ሻ	  

Where, V   = 	ሼݒଵ, ,ଶݒ	 ,௖ݒ			,………… ሽ is the matrix of 
cluster centers to be determined, X is the matrix of input 
data points, U is the matrix of fuzzy membership degree 
values, ܿ	is the number of clusters, and ݊			is the number of 
input data points. The distance between each data point and 
cluster center is denoted by Euclidean norm: 
 

݀ሺݔ௞, ௜ሻݒ ൌ 	 ௞ݔ‖ െ  ሺ2ሻ																												௜‖ଶݒ
In Eq. (1), ࢑࢞ is the ݇௧௛of d-dimensional measured data, m 
is any real number greater than 1 that isሺ1 ≪ ݉ ≪  ࢏࢜  ,(∞
is the ݅௧௛ cluster center, ࢑࢏࢛	is the membership degree value 
of  ݇௧௛  data point belonging to ݅௧௛ cluster and  
 

෍ݑ௜௞ ൌ 1										

௖

௜ୀଵ

																																								ሺ3ሻ 

Thus for ∀݇, and weighted exponent ݉ ൐ 1, the necessary 
condition for minimizing Eq. (1) can be derived as  
 

௜௞ݑ ൌ 			 ቎෍൭
௞ݔ‖ െ ௜‖ଶݒ

ฮݔ௞ െ ௝ฮݒ
ଶ൱

ଵ
௠ିଵൗ௖

௝ୀଵ

቏

ିଵ

, ሺ4ሻ 

 
 

௖ݒ ൌ 	
∑ ௜௞ݑ

௠	ݔ௞
௡
௞ୀଵ

∑ ௜௞ݑ
௠						௡

௞ୀଵ
൘ 																												ሺ5ሻ 

Where, 1 ൑ ݅ ൑ ܿ, 1 ൑ ݇ ൑ ݊ 
During the clustering process, the FCM clustering 
algorithm searches for optimal clustering centers and 
membership degrees by minimizing the objective function 
iteratively. 
 
A New Metric [8] 
As we know that, the Euclidean norm is well known and 
commonly used as a metric with k-means and fuzzy c-
means clustering algorithms. However, the parameter 
estimate resulting from an objective function based on this 
Euclidean metric may not be robust in a noisy environment. 
Therefore, an alternative metric is introduced to replace the 
Euclidean norm for better robustness.  
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݀ሺݔ௞, ௜ሻݒ ൌ 1 െ ௞ݔ‖ߚሺെ݌ݔ݁ െ  ሺ6ሻ									௜‖ଶሻ,ݒ
Where ߚ is a constant which can be defined by:- 

ߚ		 ൌ ൭
1
݊
	෍‖ݔ௞ െ ‖ݔ̅
௡

௞ୀଵ

൱

ିଵ

, 

 With    ̅ݔ ൌ
ଵ

௡
∑ ௞ݔ
௡
௞ୀଵ 		. 

 
Using this new metric norm, the alternative hard c-means 
(AHCM) and alternative fuzzy c-means (AFCM) clustering 
objectives functions are modified as:- 
 
Alternative hard c-means (AHCM) clustering [8] 
A good clustering method will cluster data set ܺ ൌ
ሼݔଵ, ………… , ௡ሽ into ܿ well partitions with   2ݔ ൑ ܿ ൑ ݊ െ
1. Since we have no priori information about unlabelled 
data set ܺ, a reasonable criteria or objective function is 
important for a clustering method. Intuitively, each cluster 
shall be as compact as possible. Thus, a well-known hard c-
means (HCM) clustering objective function ܬு஼ெ is created 
with the Euclidean norm as  

ு஼ெܬ ൌ෍෍ฮݔ௝ െ ௜ฮݒ
ଶ

௝∈ூ೔

௖

௜ୀଵ

	, 

 
Where, ݒ௜ is the ݅௧௛ cluster center. The necessary condition 
of minimizing ܬு஼ெ is  
 

௜ݒ ൌ
∑ ௝௝∈ூ೔ݔ

|௜ܫ|
 

 

Where, ݆ is in the index set ܫ௜ if ฮݔ௝ െ ௜ฮݒ
ଶ
 is minimum of   

ቄฮݔ௝ െ ௜ฮݒ
ଶ
,…… . , ฮݔ௝ െ ௖ฮݒ

ଶ
ቅ. 

As we know that, the Euclidean norm is sensitive to noise 
or outliers. Hence HCM clustering algorithm is affected by 
noise and outliers. Therefore, new metric norm is proposed 
to replace the Euclidean norm in the HCM objective 
function. Thus, an alternative hard c-means (AHCM) 
clustering objective function is proposed as 
 

஺ு஼ெܬ ൌ෍෍ቄ1 െ ݌ݔ݁ ቀെߚฮݔ௝ െ ௜ฮݒ
ଶ
ቁቅ

௝∈ூ೔

௖

௜ୀଵ

	, 

Where ߚ is a constant which can be defined by:- 

ߚ		 ൌ ቀ
ଵ

௡
	∑ ฮݔ௝ െ ฮ௡ݔ̅

௝ୀଵ ቁ
ିଵ
,  

 

With      ̅ݔ ൌ
ଵ

௡
∑ ௝ݔ
௡
௝ୀଵ  . 

 
And ݆ ∈  ூ ifܫ
 

1 െ ݌ݔ݁ ቀെߚฮݔ௝ െ ௜ฮݒ
ଶ
ቁ ൌ 

min
௞
ቄ1 െ ݌ݔ݁ ቀെߚฮݔ௝ െ ௞ฮݒ

ଶ
ቁቅ 

݇ ൌ 1,………… , ܿ 
 
Now, the necessary condition of minimizing AHCM 
objective function is as follows: 
 

௜ݒ ൌ
∑ ൬݁݌ݔ ቀെߚฮݔ௝ െ ௜ฮݒ

ଶ
ቁ൰	ݔ௝௝∈ூ೔

∑ ݌ݔ݁ ቀെߚฮݔ௝ െ ௜ฮݒ
ଶ
ቁ௝∈ூ೔

	.					ሺ7ሻ 

 
AHCM Algorithm [8] 
 
Let ݂ሺݒ௜ሻ be the right term of the Eq. (7) and set the 
iteration counter ݈ ൌ 0 and choose the initial values 

௜ݒ
ሺ଴ሻ, ݅ ൌ 1,…… , ܿ. 
ߝ	݁ݒ݅ܩ ൐ 0. 
Step 1. Classify ݊ data points by assigning them to the class 
of smallest distance measure using  

݀൫ݔ௝, ௜൯ݒ ൌ 1 െ ݌ݔ݁ ቀെߚฮݔ௝ െ ௜ฮݒ
ଶ
ቁ 

 
Step 2. Find ݒ௜

ሺ௟ାଵሻ	ܾݕ	ݒ௜
ሺ௟ାଵሻ ൌ ݂൫ݒ௜

ሺ௟ሻ൯. 
 

max	݂ܫ
௜
ฮݒ௜

ሺ௟ାଵሻ െ ௜ݒ
ሺ௟ሻฮ ൏  ;݌݋ݐܵ	݄݊݁ܶ			,	ߝ

݈		݁ݏ݈ܧ ൌ ݈ ൅  														.	1	݌݁ݐܵ	݋ݐ	݋݃	݀݊ܽ	1
 
Alternative fuzzy c-means (AFCM) clustering [3, 8] 
Using this new metric, the alternative fuzzy c-means 
(AFCM) clustering objective function is modified as  
 
,஺ி஼ெሺܺܬ ܻ, ܸሻ ൌ	 
 

෍෍ݑ௜௞
௠	ሾ1 െ ௞ݔ‖ߚሺെ݌ݔ݁ െ ሿ	௜‖ଶሻݒ

௡

௞ୀଵ

௖

௜ୀଵ

.						ሺ8ሻ 

 
The necessary condition for minimizing objective function 
Eq. (8) is updated as  

௜௞ݑ ൌ 			 ൦෍ቌ
1 െ ௞ݔ‖ߚሺെ݌ݔ݁ െ 	௜‖ଶሻݒ

1 െ ݌ݔ݁ ቀെߚฮݔ௞ െ ௝ฮݒ
ଶ
ቁ	
ቍ

ଵ
௠ିଵൗ

௖

௝ୀଵ

൪

ିଵ

	ሺ9ሻ 

 

௜ݒ ൌ
∑ ௜௞ݑ

௠	ሺ݁݌ݔሺെݔ‖ߚ௞ െ ௞ݔ	ሻ	௜‖ଶሻݒ
௡
௞ୀଵ

∑ ௜௞ݑ
௠	௡

௞ୀଵ ௞ݔ‖ߚሺെ݌ݔ݁ െ ௜‖ଶሻݒ
	,							ሺ10ሻ 

 
1 ൑ ݅ ൑ ܿ, 1 ൑ ݇ ൑ ݊ 

 
The proposed AFCM minimizes the objective function by 
iterations which is similar to FCM in clustering process, 
however it is more robust to noise and outliers and more 
tolerable to unequal sized clusters. 
 

IMPLEMENTATION 
For comparing the efficiency of HCM, FCM, AHCM and 
AFCM, we have used the matlab [15] development platform 
and well known UCI Machine Learning Repository [16], 
which is basically a collection of data sets used widely by 
the researcher of Machine Learning. For analysing the 
efficiency of these clustering algorithms, we have used the 
Iris Plant Dataset [16, 17]. The data set is one of the most 
popular data set widely used in pattern recognition and 
machine learning. The Iris flower dataset which is also 
known as Fisher’s Iris data set (sometimes also known as 
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Anderson’s Iris data) is a multivariate dataset introduced by 
Sir Ronald Fisher (1936) as an example of discriminant 
analysis.  
It can be downloaded from the UCI Machine Learning 
Repository at 
http://www.ics.uci.edu/~mlearn/MLRepository.html. There 
are three categories in the data set (i.e., iris setosa, iris 
versicolor and iris virginical), each having 50 patterns with 
four features [i.e., sepal length, sepal width, petal length, 
and petal width]. Iris setosa can be linearly separated from 
iris versicolor and iris virginical, while iris versicolor and 
iris virginical are not linearly separable. Fig. (1) Depicts the 
clustering result with a standard K-means algorithm. It is 
clear to see that K-means can correctly differentiate iris 
setosa from the other two iris plants. 
 
Dataset Size No. of attributes No. of classes 

Iris 150 4 3 
Table (1):- Iris Flower Plant Dataset. 

 
Implementation of HCM (k-means clustering) [15] 
The matlab function kmeans performs K-Means clustering 
by using an iterative algorithm that assigns objects to 
clusters so that the sum of distances from each object to its 
cluster centroid, over all clusters, is a minimum.  
IDX = kmeans(X, K) partitions the points in the N-by-P 
data matrix X into K clusters.  This partition minimizes the 
sum, over all clusters, of the within cluster sums of point-
to-cluster centroid distances.  Rows of X correspond to 
points, columns correspond to variables. When X is a 
vector, K-means treats it as an N-by-1 data matrix, 
regardless of its orientation.  K-means returns an N-by-1 
vector IDX containing the cluster indices of each point.  By 
default, K-means uses squared Euclidean distances. 
Used on Fisher's iris data, it will find the natural groupings 
among iris specimens, based on their sepal and petal 
measurements. With K-means clustering, we must specify 
the number of clusters that we want to create.  
Following scattered K-Means graph for iris data set (sepal 
length, sepal width and petal length) represents three 
clusters. 
 

 
 

 
 

 
Fig. (1):- Scattered K-Means graph of iris dataset for three 

clusters 
The kmeans function begins the clustering process using a 
randomly selected set of initial centroid locations. Just as in 
many other types of numerical minimizations, the solution 
that kmeans reaches sometimes depends on the starting 
points, and it is possible for it to reach a local minimum, 
where reassigning any one point to a new cluster would 
increase the total sum of point-to-centroid distances, but in 
order to find out that where a better solution exist, you can 
use the optional 'replicates' parameter. When you specify 
more than one replicate, kmeans repeats the clustering 
process starting from different randomly selected centroids 
for each replicate. 
Here, the output shows that, even for this relatively simple 
problem, non-global minima do exist. Each of these five 
replicates began from a different set of initial centroids. 
Depending on where it started from, kmeans reached one of 
two different solutions. However, the final solution that a 
kmeans return is the one with the lowest total sum of 
distances, over all replicates. The third output argument 
contains the sum of distances within each cluster for that 
best solution. 
That is the iris dataset for three clusters, five ‘replicates’ 
have been specified and the ‘display’ parameters are used 
to print out the final sum of distances for each of the 
solutions. The sum total of distances finally obtained is 
78.9788. The total elapsed time is 0.210875 seconds. 
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Implementation of Fuzzy C-Means Clustering 
The matlab function fcm performs FCM clustering [15]. The 
function fcm takes a data set and a desired number of 
clusters and returns optimal cluster centers and membership 
grades for each data point. It starts with an initial guess for 
the cluster centers, which are intended to mark the mean 
location of each cluster. The initial guess for these cluster 
centers is most likely incorrect. Next, fcm assigns every 
data point a membership grade for each cluster.  
By iteratively updating the cluster centers and the 
membership grades for each data point, fcm iteratively 
moves the cluster centers to the right location within a data 
set. This iteration is based on minimizing an objective 
function that represents the distance from any given data 
point to a cluster center weighted by that data point's 
membership grade. The dataset is obtained from the data 
file 'iris.dat' [16]. From each of the three groups (setosa, 
versicolor and virginica), two characteristics (for example, 
sepal length vs. sepal width) of the flowers are plotted in a 
2-dimensional plot. 

 
Fig.2. Scattered Fuzzy C-Means graph of iris dataset for 

three clusters 
 

 
Fig. (3):- Scattered Fuzzy C-Means graph with initial and 

final fuzzy cluster centers. 
 
FCM clustering is an iterative process. The process stops 
when the maximum number of iterations is reached, or 
when the objective function improvement between two 
consecutive iterations is less than the minimum amount of 

improvement specified. For iris dataset comprising of 18 
total iteration count results a total objective function equals 
to 60.505711. The total elapsed time is 0.300550 seconds. 
The figure shows the initial and final fuzzy cluster centers. 
The bold numbers (1, 2, 3) represent the final fuzzy cluster 
centers obtained by updating them iteratively. 
 

RESULTS OF THIS EXPERIMENT 
This experiment reveals the fact that K-Means clustering 
algorithm consumes less elapsed time i.e. 0.210875 seconds 
than FCM clustering algorithm which takes 0.300550 
seconds. On the basis of the result drawn by this 
experiment we can say that K-Means clustering algorithm 
is less time consuming than FCM algorithm. 
Comparison of Time Complexity of K-Means and FCM  
As we know that the time complexity of K-means [1, 17] is  
ܱሺ݊ܿ݀݅ሻ and time complexity of FCM [17] is		ܱሺ݊ܿଶ݀݅ሻ.  
When we will keep the number of data points and number 
of iteration constant that is, n=150 (as our Iris dataset has 
150 data points), d = 4 and ݈݁ݐ	ݕܽݏ	20 =݅ and we make the 
cluster varying. Here n = number of data points, c=number 
of cluster, d = number of dimension and ݅	= number of 
iterations. The following table and graph represents the 
comparison in details.  
 
Algorithm Time Complexity Elapsed Time (sec.) 
K-Means ܱሺ݊ܿ݀݅ሻ 0.210875 

FCM ܱሺ݊݀ܿଶ݅ሻ 0.300550 
Table (2):- Comparison between K-means and FCM with 

respect to Elapsed Time. 
 

S. 
No. 

Number of 
Cluster 

K-Means Time 
Complexity 

FCM Time 
Complexity 

1 1 12000 12000 
2 2 24000 48000 
3 3 36000 108000 
4 4 48000 192000 
5 5 60000 300000 
Table (3):- Time Complexity of K-means and FCM when 

we kept ݊, ݀,  and make the Number of	ݐ݊ܽݐݏ݊݋ܿ	݅	݀݊ܽ
cluster ܿ varying. 

 

 
Fig. (4):- Time complexity of K-Means and FCM by 

varying number of clusters. 
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Now, I am going to keep the number of cluster constant and 
let us assume that ݊ ൌ 150, ܿ ൌ 2	ܽ݊݀	݀ ൌ 2		and make 
the ܰݎܾ݁݉ݑ	݂݋	݊݋݅ݐܽݎ݁ݐܫ	݅ varying. By doing so we get 
the following results:- 
 

S. 
No. 

Number of 
Iteration 

K-Means Time 
complexity 

FCM Time 
Complexity 

1 5 3000 6000 
2 10 6000 12000 
3 15 9000 18000 
4 20 12000 24000 
Table (4):- Time Complexity of K-means and FCM when 
we kept ݊, ݀,  and make the Number of	ݐ݊ܽݐݏ݊݋ܿ	ܿ	݀݊ܽ

iteration ݅ varying. 
 

 
Fig. (5):- Time complexity of K-Means and FCM by 

varying number of iterations. 

Inter-Cluster Distance ሺ࢘ࢋ࢚࢔࢏ࢊሻ and Intra-Cluster Distance 
ሺࢇ࢚࢘࢔࢏ࢊሻ of the Clusters:- 
Here I am going to calculate the Inter-Cluster Distance and 
Intra-Cluster Distance to evaluate the clustering results and 
to compare the efficiency of the clustering algorithms. 
 
Inter-Cluster Distance 
Inter-Cluster Distance basically specifies the distance 
between the centroids of the clusters. 

݀௜௡௧௘௥ ൌ 	ฮݒ௜ െ  ௝ฮݒ
As we know that, the main objective of the clustering is to 
maximize the distance between the clusters so that the 
objects of different clusters are as dissimilar as possible. 
Therefore, the maximum value of Inter-Cluster distance 
shows that the objects of different clusters are more 
dissimilar.  
 
Intra-Cluster Distance 
Intra-Cluster Distance specifies the distance between the 
data vectors within a cluster. 
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As we know that, the main objective of the clustering is to 
minimize the distance the cluster so that the objects of a 
cluster are as similar as possible. Therefore, the minimum 
value of Intra-Cluster distance shows that the objects within 
a cluster are more similar.  
 

Table (5) Comparison of K-Means and FCM 

Dataset 
Clustering 
Algorithm 

Fitness 
Value 

Inter-Cluster 
Distance 

Intra-Cluster 
Distance 

Elapsed Time Accuracy (%) 

Iris Flower 
Plant 

K-Means 78.9788 8.7277 31.1403 0.210875 88% 

FCM 60.5057 9.8889 364.2773 0.300550 90% 

AFCM 08.6058 9.4488 356.5845 0.422565 91.57% 
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